The partial Schur multiplier of a group
نویسندگان
چکیده
منابع مشابه
On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملon a conjecture of a bound for the exponent of the schur multiplier of a finite $p$-group
let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...
متن کاملA Multilinear Schur Test and Multiplier Operators
A multilinear version of Schur’s test is obtained for products of L spaces and is used to derive boundedness for multilinear multiplier operators acting on Sobolev and Besov spaces.
متن کاملsecond cohomology of lie rings and the schur multiplier
we exhibit an explicit construction for the second cohomology group $h^2(l, a)$ for a lie ring $l$ and a trivial $l$-module $a$. we show how the elements of $h^2(l, a)$ correspond one-to-one to the equivalence classes of central extensions of $l$ by $a$, where $a$ now is considered as an abelian lie ring. for a finite lie ring $l$ we also show that $h^2(l, c^*) cong m(l)$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2013
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2013.07.002